
Tests of Xenocode’s byte blaster client software with an nbsp-based

noaaport system∗

José F. Nieves

Department of Physics

University of Puerto Rico

nieves@ltp.upr.clu.edu

Ray Weber

Massachusetts Skywarn

rayoffice@ndws.com

18 Dec 2005

Abstract

This short note summarizes the tests and
workarounds that we have done with the Xenocode
byte blaster code that would allow it to ingest data
from a noaaport-based emwin server.

Introduction and Motivation

nbsp is a software suite to receive and process data
from a noaaport system. Among its features, it
can redistribute the data masquerading as an emwin
(byte blaster) server. Our original goal was to deter-
mine to what degree the current version of the com-
mon byte blaster client programs for windows could
get the data from such a noaaport processing system,
with the noaaport side being handled by nbsp. Our
tests, using perlemwin as the client software (running
in linux and freebsd) showed that it should be possi-
ble to do so.

It was immediately obvious that there were some
issues ingesting the feed with Xenocode’s byteblaster
emwin client software. After some time, we found
several inefficiencies in the byte blaster code that
caused it to miss data sent from nbsp. As already
mentioned, perlemwin under linux or FreeBSD has
no issues at all.

We have made fixes to this code to allow it to work
at the potential higher data rates that nbsp allows.

∗Authors’ names appear in alphabetical order.

Testing has showed it to be working rather well. How-
ever any emwin software based on this code needs to
implement the fixes so it will keep up with higher
data rates than the original 9.6 and 19.2 kbit rates.

Our comments below are based on our experience,
and our motivation in this short note is to document
the changes we had to make and our understanding
of the issues involved.

Background

The byte blaster code in the client/ENGINE.FRM is
based on an event loop. As a result, the data pro-
cessing portion of the code is called only in response
to an event, and the way this event is triggered in
the code is by setting a timer (controlled by the vari-
able Timer1 in the code). When the timer expires,
the call-back function is called and the program goes
to process a block of data (1116 bytes). After pro-
cessing one block, the timer is reset and the program
waits until the timer expires again to enter the next
processing loop, and so on.

Problem

The problem is that time interval defined in the code
for the Timer1 is 500 ms (milliseconds). In particu-
lar, this means that if it is reading from a noaaport
based server, it will miss most of the data sent to it,

1



since the data is sent at a much faster rate than a
few kbytes/second. Usually, products comprised of
just one block would be received and processed, but
products made out of more than one block would be
received incomplete since some of the blocks would
be missed in the 500 ms waiting interval.

Workaround

The best workaround we found was to set the Timer1
as short as possible, 1 ms. There is little doubt that
this is not “the best” solution. But, from an opera-
tional point of view, it is the least disruptive modifi-
cation of the code that allows it process the data as
fast as possible. As already mentioned, for practical
purposes, it seems to work rather well.

Nevertheless, that change by itself was not enough.
Changing that interval value had other effects, re-
lated to buffering and timeout waiting for data. For-
tunately, it seems that the additional changes re-
quired are restricted to modify the size of a receive
buffer and the timeout setting for “no data received”.
A suitable increment of the values of both parameters
seems to produce a perfectly working configuration.

We are not aware of any other side effects of those
modifications. The recompiled byte blaster client has
been tested using nbsp running on linux as the noaa-
port server, and also under freebsd, independently,
and we have not found any further problems.

Summary

We have tested Xenocode byteblaster emwin client
software against an nbsp based emwin-like server. We
have identified some inefficiencies in the byte blaster
code that causes it to miss data sent from nbsp, and
we have suggested specific modifications of the code
as workarounds.

We are publishing openly the source of the only
modified file in the client software “ENGINE.FRM”,
as well as a diff file “ENGINE.FRM.diff” against the
original file, for documentation purposes. We do so
with the intention that authors of byte blaster-based
windows emwin software can use this code as a ref-

erence point to modify and probably optimize their
code within their own framework, that would allow
them to work with an nbsp-based noaaport system.

2


